Arithmetic in a Finite Field
نویسندگان
چکیده
منابع مشابه
Finite Field Arithmetic
11.1 Prime fields of odd characteristic 201 Representations and reductions • Multiplication • Inversion and division • Exponentiation • Squares and square roots 11.2 Finite fields of characteristic 2 213 Representation • Multiplication • Squaring • Inversion and division • Exponentiation • Square roots and quadratic equations 11.3 Optimal extension fields 229 Introduction • Multiplication • Exp...
متن کاملComplexity of finite field arithmetic
For integers, the parameter n is the bit-length, and for the finite field Fq we let n = log q. In the case of polynomial root-finding, d is the degree of the polynomial and we list bounds on the expected running time since these operations are most efficiently implemented using probabilistic algorithms. In Lecture 3 we addressed the cost of addition and subtraction in both Z and Fq, and the cos...
متن کاملFinite Field Models in Arithmetic Combinatorics
The study of many problems in additive combinatorics, such as Szemerédi’s theorem on arithmetic progressions, is made easier by first studying models for the problem in F p , for some fixed small prime p. We give a number of examples of finite field models of this type, which allows us to introduce some of the central ideas in additive combinatorics relatively cleanly. We also give an indicatio...
متن کاملFinite field arithmetic using quasi-normal bases
Efficient multiplication in finite fields Fqn requires Fq-bases of low density,i.e., such that the products of the basis elements have a sparse expression in the basis. In this paper we introduce a new family of bases: the quasi-normal bases. These bases generalize the notion of normal bases and provide simple exponentiation to the power q in Fqn . For some extension fields Fqn over Fq, we cons...
متن کاملon finite arithmetic groups
let $f$ be a finite extension of $bbb q$, ${bbb q}_p$ or a global field of positive characteristic, and let $e/f$ be a galois extension. we study the realization fields of finite subgroups $g$ of $gl_n(e)$ stable under the natural operation of the galois group of $e/f$. though for sufficiently large $n$ and a fixed algebraic number field $f$ every its finite extension $e$ is re...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1980
ISSN: 0025-5718
DOI: 10.2307/2006401